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ABSTRACT: The objective of this work was to establish that
unbound maximum concentrations may be reasonably
predicted from a combination of computed molecular
properties assuming subcutaneous (SQ) dosing. Additionally,
we show that the maximum unbound plasma and brain
concentrations may be projected from a mixture of in vitro
absorption, distribution, metabolism, excretion experimental
parameters in combination with computed properties (volume
of distribution, fraction unbound in microsomes). Finally, we
demonstrate the utility of the underlying equations by showing
that the maximum total plasma concentrations can be
projected from the experimental parameters for a set of
compounds with data collected from clinical research.
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The desire to guide medicinal chemistry design and
synthesis toward favorable chemical space has led to a

variety of computational approaches. These include the seminal
work of Lipinski1 as well as others2,3 who have attempted to
define criteria as to which compounds are favorable with
respect to drug-likeness. These criteria are often based upon
calculatable physical−chemical properties and allow for the
straightforward application of such criteria to the evaluation of
virtual compounds. Other methods have been developed in an
attempt to directly model ADME (absorption, distribution,
metabolism, and excretion) parameters from a molecular
structure and have included the prediction of clearance,4

bioavailability,5 and central nervous system (CNS) penetra-
tion.6,7

Blood−brain barrier modeling has proven particularly
challenging. Previous computational models have been
developed to predict CNS penetration via estimation of the
total brain-to-plasma concentration ratio Cb:Cp.

6−10 However, a
compound's affinity for plasma proteins and brain tissue may
also greatly affect its target exposure in both the brain and the
plasma, rendering Cb:Cp values insufficient as a stand-alone
parameter. Whereas previous studies have focused on the
concentration ratios, it is the concept of the maximum free
concentration (Cmax,u) of a drug that is of interest in the present
work.
Here, we explore the value of using multiple combined

computational models as they pertain to a common preclinical
CNS experiment: single dose SC injections to determine both
neuroexposure and concomitant peripheral exposure. The
maximum free concentration of a drug following single
subcutaneous (SC) dosing may be expressed as a function of

compound dose (mg/kg) and steady-state volume of
distribution (VDss). If one can calculate VDss and the fraction
of compound unbound in plasma ( f u,p) from the molecular
structure, then an estimate of the maximum free plasma
concentration (Cmax,p,,u) should be viable. For a peripherally
acting drug, this method may be used to estimate the ratio of
free drug exposure (maximum unbound plasma compound
concentration, Cmax,p,u) to binding/functional activity at the
intended biological target. Projected Cmax,p,u values may also be
used to calculate the therapeutic index for an off-target
pharmacology and also help select proper doses for in vivo
studies. Furthermore, if the brain availability (BA) can be
calculated, then an estimate of the drug's free brain
concentration (maximum unbound brain compound concen-
tration, Cmax,b,u) should also be possible. Computational models
for both VDss

11 and total B/P6−10 have been the subject of
previous computational studies and provide the foundation for
this work.
The “Cmax,u equation” can be formulated as:
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Here, we make the key assumption that the concentration
from any dosing study may be normalized to a fixed dose (10
mg/kg); hence, PK is linear across doses. For example, if a drug
was dosed at 50 mg/kg resulting in a Cmax,p of 100 nM,
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normalization to a 10 mg/kg would yield a normalized
exposure of 20 nM. This enables a straightforward comparison
of Cmax,p across published or internal data sets, where dosing
regimens may vary. Additionally, we use a model for the
calculated volume of distribution, cVDss, based on the
previously published models.11 T1/2 is the half-life of
compound, and Tmax is the time of maximum drug
concentration as illustrated in Figure 1. These parameters are

calculated from blood clearance, which is, in turn, calculated
using a model for microsomal clearance. Further details of this
computation are provided in the Supporting Information. MW
is the molecular weight of the compound.
Calculated f u,p and fraction unbound in brain ( f u,b) values

were determined via correlation between measured f u,p and f u,b
values with calculated lipophilicity. Correlations between f u,p
and fu,b with a variety of physicochemical properties revealed a
relationship between these values and lipophilicity, as illustrated
by the correlation with the computed ElogD12 (cElogD) in
Figure 2. For the set of compounds in Table 1, the log( f p,u)

values are well correlated (R2 = 0.63; MSE = 0.07) with the
cElogD parameter and other measures of lipophilicity such as
ClogP (R2 = 0.48; MSE = 0.10). Other physical properties such
as MW, TPSA, and hydrogen bond donor/acceptor counts did
not have statistically significant correlations. Although a similar
relationship exists for fu,b and cElogD (R2 = 0.48; MSE = 0.12),

the correlation does not hold for strongly basic compounds
(represented as blue symbols) with cElogD values less than 1.5.
This likely reflects the positive correlation between the degree
of ionization of a compound and that compound's correspond-
ing affinity for brain tissue/phospholipid binding, an effect
previously pointed out by Laneskij and co-workers.13 Removal
of those two compounds from the correlation yields better
regression results (R2 = 0.67; MSE = 0.08) for the remaining
set of compounds, which are either weakly basic or neutral.
For this work, we used the following relationships to predict

fraction unbound values based upon the calculated ElogD:

= − ×f Dlog(c ) 0.34 0.44 cElogu,p (2)

= − − ×f Dlog(c ) 0.32 0.35 cElogu,b (3)

These correlations have been used to predict fraction
unbound values for compounds with cElogD values greater
than 1.0. Below this value, a compound is represented by a fixed
value and set at 1 (since compounds cannot be over 100%
free).
On average, an overestimation of Cmax,p,u is observed for the

training set (Table 1); thus, an additional empirical correction
factor was applied to normalize the data (eq 4).

= − + ×C Clog(c ) 0.59 1.06 log(c )max,p,u max,p,u (4)

For CNS targeting molecules, it is the free brain
concentration (Cmax,b,u) that is of consequence14,15 and is
what we wish to estimate. Again, we make a similar assumption
that Cmax,b,u from single oral dosing studies may be normalized
to a fixed dose of 10 mg/kg (linear neuropharmacokinetics
across doses).

= ×C C cBAmax,b,u max,p,u (5)

where calculated BA is the ratio Cb, u:Cp, u as defined
16
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Here, the Cb:Cp is the total brain/plasma concentration ratio
that has typically been used to model brain penetration. The
inclusion of fu,p and fu,b terms in formulating the “BA”
represents an important distinction compared to B/P values
and underlies a shift in past modeling efforts.6 Furthermore,
this view of optimizing drugs using the parameters defined in
eqs 1−6 is now different than typical CNS models6−10 and
requires an assessment of four parameters: VDss, fu,p, fu,b, and
Cb:Cp. No published data set exists with all of those parameters
experimentally determined, along with reported free brain drug
concentrations. For this reason, we demonstrate feasibility of
predicting Cmax,p,u and Cmax,b,u for a set of proprietary
compounds from the CK1δ/ε project for which values for
Cmax,p,u, Cmax,b,u, fu,p, and fu,b have been collected. These data are
summarized in Table 1.
An example workflow for how the cCmax,p,u and cCmax,b,u

values are derived is provided in Table 2 for compound 13. An
Excel spreadsheet containing the calculations for all compounds
in Table 1 is provided in the Supporting Information along with
a more detailed explanation of the workflow. The correlation
between the observed concentration values for the free plasma
and free brain is shown in Figure 3. Here, the x-axis is the
observed in vivo concentrations (Cmax,p,u, Figure 3a; and Cmax,b,u,
Figure 3b) plotted versus the corresponding predicted cCmax,p,u

Figure 1. Schematic area under the compound concentration−time
curve (AUC).

Figure 2. Correlation between fraction unbound plasma ( f u,p) and
fraction unbound brain ( f u,b) with the calculated ElogD (cElogD).
Symbol coloring corresponds to the predicted ionization of the
compound at pH 7.4; green symbols represent neutral compounds,
yellow symbols represent weakly basic compounds, and blue symbols
represent strongly basic (pKa ≥ 8).
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Table 1. Casein Kinase Compound Properties and Exposure Data

predicted values

CMPD MW Cmax,p,u (nm) Cmax,b,u (nm) Cb:Cp cVDss (l/kg) cCb:Cp cElogD cCmax,p,u
a (nM) cCmax,b,u

a (nM)

training set
1 338 1521 12 0.05 2.82 0.13 0.67 3352 273
2 443 2816 27 0.02 1.48 0.04 1.50 2323 62
3 337 271 72 0.9 1.70 0.29 3.28 249 77
4 419 1646 117 0.13 2.69 0.10 1.91 907 69
5 239 1448 1606 1.8 1.62 1.08 2.78 1149 1106
6 279 543 383 1.6 1.51 0.54 3.11 642 340
7 271 1087 400 0.8 1.35 1.41 2.69 1168 1441
8 309 359 140 1.4 2.00 1.8 2.81 461 784
9 323 332 137 1.7 2.19 0.98 2.87 396 374
10 281 200 66 1.7 1.62 3.06 2.94 459 1359
11 309 1525 784 0.9 2.04 1.30 2.25 777 831
12 297 562 193 0.7 1.51 1.02 2.72 476 450
13 360 180 88 2.1 1.95 0.91 3.19 309 292
14 416 251 85 1.9 4.71 0.65 2.83 165 107
15 300 275 66 2.7 1.78 2.33 3.24 347 843
16b 513 80 784 0.04 2.09 0.06 3.90 111 8
17 269 2630 193 0.79 1.20 0.44 2.66 1304 496
18b 491 517 88 0.04 0.78 0.12 3.72 243 34
19c 256 10364 5385 1.3 1.51 0.29 1.75 1830 378

test set
20 433 673 69 0.3 2.40 0.15 2.7 320 45
21 404 1066 825 1.1 2.19 0.33 2.14 594 160
22 282 117 24 1.2 2.34 0.8 3.44 222 198
23 296 506 298 3.2 1.74 0.92 1.17 2195 1271
24 322 1291 799 0.9 0.89 0.68 1.89 1867 927
25 314 689 874 4 1.59 0.6 1.46 1674 679
26 308 4322 878 0.5 1.18 0.52 1.96 1610 624
27 338 349 523 2 2.04 0.74 1.76 1122 608
28 324 1574 560 0.6 1.15 0.72 1.81 1526 799
29 309 833 449 0.9 0.70 0.93 1.82 2227 1476
30 339 1893 1104 1 0.85 0.59 2.32 1005 487
31 372 1790 214 0.3 1.66 0.44 2.25 666 243

acCmax,p,u values from eq 1 are scaled lower by ∼0.58 log units based upon empirical correlation. Further information is provided in the Supporting
Information, Table 1, which includes values for cf u,p and cf u,b as described in eqs 2 and 3; values for cT1/2 (from cVDss, cRLM, cf u,p, and cfu,b) and
cTmax (from cT1/2), which are necessary parameters for eq 1; full calculation of cCmax,p,u and cCmax,b,u as described in eqs 1−6; and a full calculation of
these parameters using experimental data for comparison. In this table and subsequent figures, the letter “c” is added as a prefix to designate
computed values. bNon-CNS controls. cNonkinase inhibitor.

Table 2. Example Cmax,u Calculation Workflowa

aCalculated properties required for Cmax,u calculations are provided for compound 13 (Table 1). The workflow shows eq 1 split into three parts.
Further details and explanation can be found in the Supporting Information.
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and cCmax,b,u values on the y-axis. Both plots in Figure 3 are
colored using filled symbols to designate compounds tested
previous to the construction and use of the Cmax,u models and
open symbols to designate compounds tested after model
construction. A majority of prospectively designed compounds
were found to have higher Cmax,b,u values on this normalized
dose scale. In fact, only one compound was designed and
synthesized with a predicted Cmax,b,u less than 300 nM.
Furthermore, the extent of CNS exposure can be calculated
to yield a BA value, which may guide design to either decrease
or increase CNS exposure, depending on the desired objective.
This method may allow for better perspective design, rank
order of real compounds to be tested in vivo, and reduction of
the number of in vivo cycles required to identify a compound
with desirable exposure levels.
To better understand the factors that drive the maximum

concentration values, the correlation coefficients between the
observed concentrations to the component models are shown
in Table 3. Free plasma levels are most correlated with cf u,p and

cVDss, while free brain concentrations correlate with both
cCb:Cp and, to a lesser extent, cf u,p. Interestingly, the correlation
between Cmax,b,u and cfu,p is positive, meaning that as the
compound's free fraction increases, so does the observed free
brain concentrations. This may have implications for
compounds targeting non-CNS indications, since, in those
instances, moderating cf u,p may help to avoid CNS related side
effects.

The predictive ability of these models is likely aided by the
fact that a majority of the compounds in the “training” and
“test” sets are low VDss compounds of similar structure (i.e.,
kinase inhibitors) with relatively limited transporter liability.
The prediction of Cmax,p,u and Cmax,b,u values may be more
difficult if accurate values for VDss and BA cannot be reliably
attained from those underlying computational models. In our
experience, these difficulties are more likely to be encountered
in chemical classes with higher volumes and/or transporter-
mediated CNS efflux issues.
It is important to note that this methodology may also be

used in conjunction with existing experimental data, rather than
simply as a replacement. For instance, when in vitro data exist
for compounds [f u,p, f u,b, rat liver microsome (RLM)], in
addition to total brain exposure (Cb:Cp), the computed volume
of distribution and microsomal binding models is capable of
filling in the gaps. This correlation is shown in Figure 4a.

= − + × _C Clog( ) 0.36 1.01 log(proj )max,p,u max,p,u (7)

= − + × _C Clog( ) 0.23 0.96 log(proj )max,b,u max,b,u (8)

From these relationships, there is a very reasonable
agreement between the observed free drug concentrations in
both plasma and brain with the values projected using eqs 3 and
4 (R2 values of 0.84 and 0.93 for Cmax,p,u and Cmax,b,u,
respectively).
Finally, we provide further validation of this method via the

calculation of total plasma concentration (Cmax,p) of a drug
following a single oral dose. Here, the concentrations are
computed from measured values taken from the literature and
depend primarily on the observed VDss and F. Adjusting eq 1
for single oral dosing yields:

= × × ×
− ×
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As before, the normalization of concentration and dose to a
single value (10 mg) allows for the comparison of the relative
exposure of many types of drugs. Figure 4b compares these
normalized drug concentrations with those projected from the
reported VDss and F. Compounds with low F, displayed as red
symbols, were the most difficult to project using eq 9.
Compounds with moderate (>30%) or high (>70%) F are
well correlated (R2 = 0.75) using projected values from known
VDss and human CLint,u values. With this method, we estimate
intrinsic clearance values, CLint,u, via a correction for micro-
somal binding as described by Gao et al.17 For compounds with
good F, it is reassuring to note that the Cmax,p does follow the
trend defined by the ratio of dose and VDss. This correlation
underscores the value of having a reasonable means for
computing VDss and clearance (CLint) for prospective design of
chemical compounds.
We have shown that the appropriate combination of

computational ADME models are capable of reproducing
experimentally measured compound concentrations. For this
work, we have focused on compound concentrations following
a single subcutaneous dose. We feel that the direct computation
of Cmax,b,u from molecular structure is useful for the estimation
of compound exposure and extent of CNS penetration. This
model may be generally useful in designing compounds for
improved Cmax,b,u and BA and has been successfully used to
identify compounds at the drug design stage for the CNS
CK1δ/ε program. Through leveraging the model developed

Figure 3. Measured vs computational predictions of Cmax,u values at 10
mg/kg SC dosing. (A) Refers to the measured free plasma (Cmax,p,u; x-
axis) vs computed free plasma (cCmax,p,u via eq 1; y-axis)
concentrations. (B) Refers to the measured free brain (Cmax,b,u; x-
axis) vs computed free brain (cCmax,b,u via eq 2; y-axis) concentrations.
All plots are colored using filled blue/red symbols to designate
compounds tested before model construction and open/white symbols
to designate compounds tested after model construction. Non-CNS
kinase inhibitors are highlighted in red in the scatter plots and are
considered part of the “training” set. A good correlation between
experiment and predicted log(Cmax,p,u) values (R

2 = 0.55; MSE = 0.10)
is observed. The correlation between experimental and predicted
log(Cmax,b,u) values is only slightly lower (R2 = 0.46; MSE = 0.29).

Table 3. Correlation Coefficients for Individual Component
Models to Observed Concentrations

Cmax,p,u (nM) Cmax,b,u (nM)

cVDss 0.26b 0.02
cCb:Cp 0.00 0.43b

cf u,p 0.41b 0.19a

ap < 0.05. bp < 0.005.
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herein, along with the recently disclosed CNS multiple
parameter optimization (MPO) desirability method,18 several
optimal compounds were identified and screened in an in vivo
circadian rhythm model (data to be discussed elsewhere).
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(14) Frideń, M.; Bergström, F. Measurement of Unbound Drug
Exposure in Brain: Modeling of pH Partitioning Explains Diverging
Results between the Brain Slice and Brain Homogenate Methods.
Drug Metab. Dispos. 2011, 39, 353−362.
(15) Chen, H.; Winiwarter, S. In silico prediction of unbound brain-
to-plasma concentration ratio using machine learning algorithms. J.
Mol. Graphics Modell. 2011, 29, 985−995.
(16) Kalvass, J. C.; Maurer, T. S. Use of Plasma and Brain Unbound
Fractions to Assess the Extent of Brain Distribution of 34 Drugs:
Comparison of Unbound Concentration Ratios to in Vivo P-
Glycoprotein Efflux Ratios. Drug Metab. Dispos. 2007, 35, 660−666.
(17) Gao, H.; Yao, L. In Silico Modeling of Nonspecific Binding to
Human Liver Microsomes. Drug Metab. Dispos. 2008, 36, 2130−2135.
(18) Wager, T. T.; Chandrasekaran, R. Y. Defining Desirable Central
Nervous System Drug Space through the Alignment of Molecular
Properties, in Vitro ADME, and Safety Attributes. ACS Chem. Neurosci.
2010, 1, 420−434.

Figure 4. (a) Observed and projected Cmax,u values for a normalized SC dose (10 mgk). Data are provided in the Supporting Information, Table 1.
(b) Observed and projected maximum concentration values normalized to 10 mg dose. Compounds with low bioavailabilites (F < 30%) are
displayed as red symbols. Compounds with moderate (>30%) or high (>70%) bioavailability are displayed as light and dark blue symbols. Data used
for this analysis are included in the Supporting Information, Table 2 (derivation of end points from literature sources), and Supporting Information,
Table 3 (limited data, full referencing of experimental data; including the end points % hFu, VDss, F, Cmax).

ACS Medicinal Chemistry Letters Technology Note

dx.doi.org/10.1021/ml300029a | ACS Med. Chem. Lett. 2012, 3, 515−519519

http://pubs.acs.org
mailto:scot.mente@pfizer.com

